Farnesoid X receptor regulates bile acid-amino acid conjugation.
نویسندگان
چکیده
The farnesoid X receptor (FXR; NR1H4) regulates bile acid and lipid homeostasis by acting as an intracellular bile acid-sensing transcription factor. Several identified FXR target genes serve critical roles in the synthesis and transport of bile acids as well as in lipid metabolism. Here we used Affymetrix micro-array and Northern analysis to demonstrate that two enzymes involved in conjugation of bile acids to taurine and glycine, namely bile acid-CoA synthetase (BACS) and bile acid-CoA: amino acid N-acetyltransferase (BAT) are induced by FXR in rat liver. Analysis of the human BACS and BAT genes revealed the presence of functional response elements in the proximal promoter of BACS and in the intronic region between exons 1 and 2 of the BAT gene. The response elements resemble the consensus FXR binding site consisting of two nuclear receptor half-sites organized as an inverted repeat and separated by a single nucleotide (IR-1). These response elements directly bind FXR/retinoid X receptor (RXR) heterodimers and confer the activity of FXR ligands in transient transfection experiments. Further mutational analysis confirms that the IR-1 sequence of the BACS and BAT genes mediate transactivation by FXR/RXR heterodimers. Finally, Fisher rats treated with the synthetic FXR ligand GW4064 clearly show increased transcript levels of both the BACS and BAT mRNA. These studies demonstrate a mechanism by which FXR regulates bile acid amidation, a critical component of the enterohepatic circulation of bile acids.
منابع مشابه
The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism.
Bile acids are the end products of cholesterol metabolism. They are synthesized in the liver and secreted via bile into the intestine, where they aid in the absorption of fat-soluble vitamins and dietary fat. Subsequently, bile acids return to the liver to complete their enterohepatic circulation. The Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily and has emerged as ...
متن کاملA Molecular Link Between Bile Acid and Lipid and Glucose Metabolism
Bile acids are the end products of cholesterol metabolism. They are synthesized in the liver and secreted via bile into the intestine, where they aid in the absorption of fat-soluble vitamins and dietary fat. Subsequently, bile acids return to the liver to complete their enterohepatic circulation. The Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily and has emerged as ...
متن کاملProtective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis.
The farnesoid X receptor (FXR), an endogenous sensor for bile acids, regulates a program of genes involved in bile acid biosynthesis, conjugation, and transport. Cholestatic liver diseases are a group of immunologically and genetically mediated disorders in which accumulation of endogenous bile acids plays a role in the disease progression and symptoms. Here, we describe the effect of 6-ethyl c...
متن کاملThe methyl transferase PRMT1 functions as co-activator of farnesoid X receptor (FXR)/9-cis retinoid X receptor and regulates transcription of FXR responsive genes.
The farnesoid X receptor (FXR) is a nuclear receptor that functions as an endogenous sensor for bile acids (BAs). FXR is bound to and activated by bile acid, and chenodeoxycholic acid (CDCA) is the natural most active ligand. Upon activation, FXR heterodimerizes with the 9-cis retinoic X receptor (RXR) and regulates genes involved in cholesterol and BA homeostasis. 6-Ethyl CDCA (6-ECDCA) is a s...
متن کاملNuclear receptors as therapeutic targets in cholestatic liver diseases.
Cholestasis results in intrahepatic accumulation of cytotoxic bile acids, which cause liver damage ultimately leading to biliary fibrosis and cirrhosis. Cholestatic liver injury is counteracted by a variety of adaptive hepatoprotective mechanisms including alterations in bile acid transport, synthesis and detoxification. The underlying molecular mechanisms are mediated mainly at a transcription...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 30 شماره
صفحات -
تاریخ انتشار 2003